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Motivation: Architecture Limitations
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» (a) Learns discriminative features but fails to model the underlying data distribution.

» (b) Treats generation as a detached processing module, which may not be optimized for the end task.

» (c) Ours: A collaborative discriminative—generative framework, jointly and end-to-end optimized for gait
recognition.

From isolated modules to end-to-end collaboration.



Method: CoD?
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? How to move beyond passive discrimination in gait recognition?
» Discriminative Path: Extract identity representations from gait sequences.
» Generative Path: Model the underlying gait distribution via diffusion-based recovery.

» Collaborative Learning: Enable generation to actively refine discriminative inference.
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High-level Control Module

\

S

qd = 2T - Norm(ConV()?l S — Fc(f,)))

v =X - cos(fg) + 4+ X; - sin(fg)

Why High-level Control?

» Coarse condition fusion (e.g., element-
wise addition)

» Lacks fine-grained control

» Degrades identity consistency

What Does It Enable?

» |ldentity-aware generation guidance

» Spatially adaptive semantic control

» Smooth and stable diffusion modulation

High-level identity semantics are injected as phase modulation, enabling
fine-grained and stable identity control in diffusion-based gait generation.



Experiments

Modality | Method | Venue | Probe Sequence (R-1) | Overall
| | INM BG CL CR UB UN OC NT |R1 RS
GaitSet AAAII9 | 69.1 682 374 650 63.1 610 672 230|650 84.8
GaitPart CVPR19 | 622 628 33.1 595 572 548 572 217|592 80.8
Silhouette | GaitGL ICCV21 | 67.1 662 359 633 61.6 581 666 179 | 63.1 82.8 :
GaitBase CVPR23 | 815 775 49.6 758 755 767 814 259 | 761 89.4 Method | Venue | OREW |  Gait3D
DeepGaitV2 TPAMI25 | 835 79.5 463 768 79.1 785 81.1 273|774 902 | | Rank-1 Rank-5 | Rank-1 mAP
Silhouette | BiFusion MTAP24 | 69.8 623 454 609 543 635 77.8 337|621 834 GaitSet AAAI9 | 463 63.6 367  30.0
+ Skeleton | SkeletonGait++ | AAAI24 | 85.1 829 466 819 80.8 825 862 475|813 955 GaitPart CVPR19 | 44.0 60.7 282 216
. GaitGL ICCV21 47.3 63.6 297 223
Silhouette | Ours | | 879 845 554 828 872 851 887 386 | 838 958 SMPLGait | CVPR22 ' ’ 63 379
: DANet CVPR23 - - 48.0 -
Performance comparisons on SUSTech1K. GaitBase cvPrR2 | 601 ) 646 )
GaitGCI CVPR23 | 685 80.8 503 395
HSTL ICCV23 | 627 76.6 613 555
— _ DyGait ICCV23 | 714 83.2 663  56.4
Method | Venue | Gait Evaluation Protocol QAGait AAAR4 | 591 740 | 670 565
| | CL UP DN BG Mean VPNet CVPR24 M w 75.4 -
CLTD ECCV24 | 780 87.8 69.7 -
GaitSet AAAII9 | 602 652 651 685 64.8 WaveLoss AAAI2S _ _ 75.6 665
GaitPart CVPR20 | 643 67.8 68.6 71.7 68.1 DeepGaitV2 | TPAMI2S 77.7 87.9 74 .4 65.8
GaitBase CVPR23 | 716 750 768 786 755 Ours - 81.2 90.8 783 712
DeepGaitV2 | TPAMI25 | 78.6 848 80.7 89.2 833 ) :
Ours - 801 869 816 909 848 Performance comparisons on GREW and Gait3D.

Performance comparisons on CCPG.




Visualization
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a) Reference sequence (b) Generate sequence GT (c) Model predicts sequence

The model learns to not only copy gait data, but to amplify its most
identifiable features for recognition.



Ablation Study
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High-level Low-level | SUSTechlK CCPG GREW  Gait3D

X X 77.4 83.3 77.7 74.4
v X 81.9 84.0 80.4 77.4
X v 81.3 83.7 79.9 77.2
v v 83.8 84.8 81.2 78.3

Ablation study of Multi-level Conditional Control
strategy.

Method | SUSTechlK CCPG GREW  Gait3D

Baseline 81.3 83.7 79.9 71.2
w/ addition 83.0 84.4 80.7 77.6
w/ Ours 83.8 84.8 81.2 78.3

The ablation study of High-level Control Module.

A | SUSTechlK CCPG GREW  Gait3D
1 83.2 84.3 80.3 77.4
learnable scalar 83.5 84.4 80.8 77.8
learnable vector 83.8 84.8 81.2 78.3

The ablation study of the learnable vector A.
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